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Channel coding
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ÃÃ

B
B′

φ+
ÃA
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Size of code: K = dA = dB′ .
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ÃB′

= K−1Trφ+
B′AMB′A

φ+

ÃA
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Motivation

Basic question: How large can F be for given K and N ?

“One-shot” quantum information theory.

I Datta and Hsieh (1105.3321v2): general converse and
achievability bounds for entanglement-assisted codes.

I Asymptotically correct for N⊗n, but not clear how to compute
efficiently.

I Matthews and Wehner (1210.4722):
I Related channel coding to hypothesis testing to obtain an

asymptotically correct converse for entanglement-assisted
codes.

I SDP + channel symmetry → efficient computation for N⊗n

I Generalises (classical) results of Polyanskiy-Poor-Verdú
(classical channels) and Wang and Renner (c-q channels).



Motivation

I This work: Start with a very general class of codes and apply
two ‘nice’ constraints obeyed by unassisted codes to obtain
upper bounds on their channel fidelity.

I Not asymptotically correct...

I ...but efficiently computable.



Forward assisted codes
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Most general form of linear map which takes operations to
operations even when acting on part of a multipartite operation.
The map only depends on ZA′B′←AB = DB′←RBFR←QEA′Q←A,
thus: MB′A = TrA′BZA′B′ABN

T
BA′ .

ZA′B′←AB corresponds to a forward-assisted code (FAC) iff it is
non-signalling from Bob to Alice.

(0804.0180) Chiribella, D’Ariano, Perinotti

(quant-ph/0104027) Eggeling, Schlingemann, and Werner



Non-signalling quantum operations

ZA′B′←AB is non-signalling from Bob to Alice if

TrB′ZA′B′←AB = ZAliceA′←ATrB.
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In terms of the Choi operator for ZA′B′←AB:

TrB′ZA′B′AB = (TrB′BZA′B′AB/dB)⊗ 11B

Non-signalling from Alice to Bob if

TrA′ZA′B′AB = (TrA′AZA′B′AB/dA)⊗ 11A



Forward assisted codes

Forward-assisted codes correspond to operators Z satisfying

(CP): ZA′B′AB ≥ 0

(TP): TrA′B′ZA′B′AB = 11AB

(NSBA): TrB′ZA′B′AB = (TrB′BZA′B′AB/dB)⊗ 11B

Channel fidelity of Z is

F = K−1TrφB′AZA′B′ABN
T
BA′

Without further constraints, can always achieve F = 1.



Non-signalling codes

(NSAB): TrA′ZA′B′AB = (TrA′AZA′B′AB/dA)⊗ 11A
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Unassisted code (UA):
ZA′B′←AB = EA′←ADB′←B

Local operations (+ shared
randomness).
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Entanglement-assisted codes
(EA): ZA′B′←AB =
E ′A′←AaDB′←Bbψab

Local operations and shared
entanglement.

NS ⊇ EA ⊇ UA.



PPT-preserving codes
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Rains (quant-ph/0008047)
Transpose map tQ : |i〉〈j|Q 7→ |j〉〈i|Q.

Any separable ρAB has positive
partial-transpose (PPT): tAρAB ≥ 0.

ZA′B′←AB is PPT-preserving (PPTp) iff
taBρaABb ≥ 0. =⇒ taB′σaA′B′b.

For dA′ = dB = 1: ZA′B′←AB is called
PPT-binding or Horodecki channel.
Zero-quantum capacity.

By a PPT-preserving code, we mean any FAC whose bipartite operation

is PPT-preserving. Additional constraint: (PPTp): tA′AZA′B′AB ≥ 0 .

We denote this class of codes by PPTp

PPTp ⊇ UA, PPTp 6⊇ EA.



PPT-preserving codes
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I We say a forward-assisted code is FHA if F is Horodecki.

I FHA ⊆ PPTp.

I Superactivation (Smith-Yard): Combination of Horodecki
channel and (zero quantum capacity) 50 percent erasure
channel can have positive capacity.

I Expect FHA capacity > UA capacity sometimes.



Relationships between classes

Forward-assisted codes

UA EA NSFHAPPTp

Closed under composition and convex combination.
For each class Ω we define:

FΩ(N ,K) := maxK−1TrφB′AZA′B′ABN
T
BA′

for dA = dB′ = K and ZA′B′AB ∈ Ω.

Capacity: QΩ(N ) := sup{r : limn→∞ F
Ω(N⊗n, b2rnc) = 1}.



Simplification of codes
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∫
dµ(U)

U ⊗ Ū |φ+〉 = |φ+〉 implies Z̄A′B′←AB has same fidelity as
ZA′B′←AB. ZA′B′←AB ∈ Ω =⇒ Z̄A′B′←AB ∈ Ω.
If µ is Haar probability measure on U(K):

Z̄A′B′AB :=

∫
dµ(U)UB′ ⊗ ŪAZA′B′ABU

†
B′ ⊗ U

T
A ,

=K(φ+
B′A ⊗ ΛA′B + (11− φ+)B′A ⊗ ΓA′B).

State of A′ :ρA′ = (ΛA′ + (K2 − 1)ΓA′)d
−1
B



Semidefinite programs

NSBA condition for Z̄ is: ΛA′B + (K2 − 1)ΓA′B = ρA′ ⊗ 11B, with
which we can eliminate ΓA′B in the expression for Z̄.
The channel fidelity simplifies to

F = TrNT
A′BΛA′B

while the constraints simplify to

0 ≤ ΛA′B ≤ ρA′ ⊗ 11B

ρA′ ≥ 0,TrρA′ = 1

NS :ΛB = 11B/K
2

PPTp :

{
tB[ΛA′B] ≥ −ρA′ ⊗ 11B/K,

tB[ΛA′B] ≤ ρA′ ⊗ 11B/K.

Further simplification possible for covariant N .



Non-signalling codes and the hypothesis-testing bound

For success probability over classical channels:

I Zero-error case: Cubitt, Leung, WM, Winter (1003.3195)

I General case: WM (1109.5417). Performance of NS codes
equivalent to powerful hypothesis-testing based upper bound
of Polyanskiy, Poor and Verdú.

The WM-Wehner generalisation of the PPV bound gives an SDP
upper-bound for performance of entanglement-assisted codes:

FEA(N ,K) ≤ B(N ,K) = max TrNT
A′BΛA′B

0 ≤ ΛA′B ≤ ρA′ ⊗ 11B

ρA′ ≥ 0,TrρA′ = 1

ΛB≤11B/K
2



Non-signalling codes and the hypothesis-testing bound

Our SDP for FNS(N ,K) differs from B(N ,K) only in having an
equality in the constraint ΛB ≤ 11B/K

2 so

FEA(N ,K) ≤ FNS(N ,K) ≤ B(N ,K).

Does FNS(N ,K) = B(N ,K)? True for classical channels.
Since the bound B is asymptotically tight,

QNS(NB←A′) = QEA(NB←A′) =
1

2
max
ρA′

I(R : B)NB←A′ρRA′

where ρRA′ is a purification of ρA′ .
(Bennett, Shor, Smolin, Thapliyal - quant-ph/0106052)



PPTp codes and entanglement distillation

A

B

A′

B′

ρAB τA′B′

Y

FΓ(ρAB,K) := max
Y∈PPTp

Trφ+
A′B′τA′B′ , dA′ = dB′ = K

Rains quant-ph/0008047

W.l.o.g. Y can be taken to be NS in both directions.
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νBA′ = NBA′/dA′

FPPTp(N ,K) ≥ FΓ(νBA′ ,K)

Bennett, DiVincenzo, Smolin, Wootters

quant-ph/9604024

If N can be implemented using one copy of νBA′ and classical
communication then FPPTp(N ,K) = FΓ(νBA′ ,K).



Werner-Holevo channels

Qutrit Werner-Holevo channel: W(3) : X 7→ 1
2(11TrX −XT).

W(3) is symmetric, therefore Q(W(3)) = 0, however...

QPPTp(W(3)) = QPPTp
0 (W(3)) = log 5

3 (using results of Rains).
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K

FNS∩PPTp((W(3))⊗2) = 1 =⇒ QNS∩PPTp
0 (W(3)) ≥ 1/2!

Can this be achieved by FHA?



PPT-p. and NS 6⊆ FHA
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All systems are qubits.
M is computational basis
measurement; H is (classically
controlled) Hadamard.
LOCC =⇒ PPT-preserving.
Non-signalling in both
directions.
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G G := F ⊗ C ◦ E
TrG(|0〉〈0|)G(|1〉〈1|) = 0,
TrG(|+〉〈+|)G(|−〉〈−|) = 0

Cubitt and Smith (0912.2737): G has quantum zero-error capacity.
Therefore, so must F .



QNS∩PPTp(W (3)) < QPPTp(W (3))?

QPPTp(W(3)) = QPPTp
0 (W(3)) = log

5

3
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Example: Qubit depolarising channel

FΩ(D⊗5
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Outlook

I Investigate further constraints e.g. k-extendibility.

I What is the asymptotic capacity of PPTp / PPTp-NS codes?

I Is true zero-error superactivation possible?

Thanks!
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