On the power on non-signalling and PPT-preserving codes

Debbie Leung (IQC - University of Waterloo)
Will Matthews (University of Cambridge)
arXiv:1406.7142

Channel coding

Size of code: $K=d_{\mathrm{A}}=d_{\mathrm{B}^{\prime}}$.

Channel fidelity: $F=\operatorname{Tr} \tau_{\tilde{A} B^{\prime}} \phi_{\tilde{\mathrm{A}} \mathrm{B}^{\prime}}^{+}=K^{-1} \operatorname{Tr} \phi_{\mathrm{B}^{\prime} \mathrm{A}}^{+} M_{\mathrm{B}^{\prime} \mathrm{A}}$
$\phi_{\mathrm{AA}}^{+}:=\left|\phi^{+}\right\rangle\left\langle\left.\phi^{+}\right|_{\tilde{\mathrm{A}}_{\mathrm{A}}}, \mid \phi^{+}\right\rangle_{\tilde{\mathrm{A}}_{\mathrm{A}}}:=K^{-1 / 2} \sum_{0 \leq j<K}|j\rangle_{\overline{\mathrm{A}}}|j\rangle_{\mathrm{A}}$

Choi operator: $L_{\mathrm{RQ}}=d_{\mathrm{Q}} \mathcal{L}_{\mathrm{R} \leftarrow \tilde{\mathrm{Q}}} \phi_{\tilde{\mathrm{Q}} \mathrm{Q}}^{+}, \mathcal{L}_{\mathrm{R} \leftarrow \mathrm{Q}} X_{\mathrm{Q}}=\operatorname{Tr}_{\mathrm{Q}} L_{\mathrm{RQ}} X_{\mathrm{Q}}^{T}$

Motivation

Basic question: How large can F be for given K and \mathcal{N} ?

"One-shot" quantum information theory.

- Datta and Hsieh (1105.3321v2): general converse and achievability bounds for entanglement-assisted codes.
- Asymptotically correct for $\mathcal{N}^{\otimes n}$, but not clear how to compute efficiently.
- Matthews and Wehner (1210.4722):
- Related channel coding to hypothesis testing to obtain an asymptotically correct converse for entanglement-assisted codes.
- SDP + channel symmetry \rightarrow efficient computation for $\mathcal{N}^{\otimes n}$
- Generalises (classical) results of Polyanskiy-Poor-Verdú (classical channels) and Wang and Renner (c-q channels).

Motivation

- This work: Start with a very general class of codes and apply two 'nice' constraints obeyed by unassisted codes to obtain upper bounds on their channel fidelity.
- Not asymptotically correct...
- ...but efficiently computable.

Forward assisted codes

Most general form of linear map which takes operations to operations even when acting on part of a multipartite operation. The map only depends on $\mathcal{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}}=\mathcal{D}_{\mathrm{B}^{\prime} \leftarrow \mathrm{RB}} \mathcal{F}_{\mathrm{R} \leftarrow \mathrm{Q}} \mathcal{E}_{\mathrm{A}^{\prime} \mathrm{Q} \leftarrow \mathrm{A}}$, thus: $M_{\mathrm{B}^{\prime} \mathrm{A}}=\operatorname{Tr}_{\mathrm{A}^{\prime} \mathrm{B}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} N_{\mathrm{BA}^{\prime}}^{T}$.
$\mathcal{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}}$ corresponds to a forward-assisted code (FAC) iff it is non-signalling from Bob to Alice.

Non-signalling quantum operations

$\mathcal{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}}$ is non-signalling from Bob to Alice if

$$
\operatorname{Tr}_{\mathrm{B}^{\prime}} \mathcal{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}}=\mathcal{Z}_{\mathrm{A}^{\prime} \leftarrow \mathrm{A}}^{\text {Alice }} \operatorname{Tr}_{\mathrm{B}}
$$

In terms of the Choi operator for $\mathcal{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}}$:

$$
\operatorname{Tr}_{\mathrm{B}^{\prime}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}}=\left(\operatorname{Tr}_{\mathrm{B}^{\prime} \mathrm{B}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} / d_{\mathrm{B}}\right) \otimes \mathbb{1}_{\mathrm{B}}
$$

Non-signalling from Alice to Bob if

$$
\operatorname{Tr}_{\mathrm{A}^{\prime}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}}=\left(\operatorname{Tr}_{\mathrm{A}^{\prime} \mathrm{A}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} / d_{\mathrm{A}}\right) \otimes \mathbb{1}_{\mathrm{A}}
$$

Forward assisted codes

Forward-assisted codes correspond to operators Z satisfying

$$
\begin{gathered}
(\mathrm{CP}): Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} \geq 0 \\
(\mathrm{TP}): \operatorname{Tr}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}}=\mathbb{1}_{\mathrm{AB}} \\
(\mathrm{NSBA}): \operatorname{Tr}_{\mathrm{B}^{\prime}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}}=\left(\operatorname{Tr}_{\mathrm{B}^{\prime} \mathrm{B}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} / d_{\mathrm{B}}\right) \otimes \mathbb{1}_{\mathrm{B}}
\end{gathered}
$$

Channel fidelity of Z is

$$
F=K^{-1} \operatorname{Tr} \phi_{\mathrm{B}^{\prime} \mathrm{A}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} N_{\mathrm{BA}^{\prime}}^{T}
$$

Without further constraints, can always achieve $F=1$.

Non-signalling codes

$(\mathrm{NSAB}): \operatorname{Tr}_{\mathrm{A}^{\prime}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}}=\left(\operatorname{Tr}_{\mathrm{A}^{\prime}{ }^{\prime}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} / d_{\mathrm{A}}\right) \otimes \mathbb{1}_{\mathrm{A}}$

Entanglement-assisted codes
(EA): $\mathcal{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}}=$
$\mathcal{E}_{\mathrm{A}^{\prime} \leftarrow \mathrm{Aa}}^{\prime} \mathcal{D}_{\mathrm{B}^{\prime} \leftarrow \mathrm{Bb}} \psi_{\mathrm{ab}}$
Local operations and shared entanglement.
$\mathbf{N S} \supseteq \mathbf{E A} \supseteq \mathbf{U A}$.

PPT-preserving codes

Rains (quant-ph/0008047)
Transpose map $\mathbf{t}_{\mathrm{Q}}:|i\rangle\left\langle\left. j\right|_{\mathrm{Q}} \mapsto \mid j\right\rangle\left\langle\left. i\right|_{\mathbf{Q}}\right.$.
Any separable ρ_{AB} has positive partial-transpose (PPT): $\mathbf{t}_{\mathrm{A}} \rho_{\mathrm{AB}} \geq 0$.
$\mathcal{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}}$ is PPT-preserving (PPTp) iff $\mathbf{t}_{\mathrm{aB}} \rho_{\mathrm{aABb}} \geq 0 . \Longrightarrow \mathbf{t}_{\mathrm{aB}} \sigma_{\mathrm{aA}^{\prime} \mathrm{B}^{\prime} \mathrm{b}}$.
For $d_{\mathrm{A}^{\prime}}=d_{\mathrm{B}}=1: \mathcal{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}}$ is called PPT-binding or Horodecki channel.
Zero-quantum capacity.
By a PPT-preserving code, we mean any FAC whose bipartite operation is PPT-preserving. Additional constraint: (PPTp): $\mathbf{t}_{\mathrm{A}^{\prime} \mathrm{A}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} \geq 0$. We denote this class of codes by PPTp

$$
\text { PPTp } \supseteq \mathbf{U A}, \mathbf{P P T p} \nsupseteq \mathbf{E A} .
$$

PPT-preserving codes

- We say a forward-assisted code is FHA if \mathcal{F} is Horodecki.
- FHA \subseteq PPTp.
- Superactivation (Smith-Yard): Combination of Horodecki channel and (zero quantum capacity) 50 percent erasure channel can have positive capacity.
- Expect FHA capacity $>$ UA capacity sometimes.

Relationships between classes

Closed under composition and convex combination.
For each class Ω we define:

$$
\begin{aligned}
& F^{\Omega}(\mathcal{N}, K):=\max K^{-1} \operatorname{Tr} \phi_{\mathrm{B}^{\prime} \mathrm{A}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} N_{\mathrm{BA}^{\prime}}^{T} \\
& \text { for } d_{\mathrm{A}}=d_{\mathrm{B}^{\prime}}=K \text { and } Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} \in \Omega .
\end{aligned}
$$

Capacity: $Q^{\Omega}(\mathcal{N}):=\sup \left\{r: \lim _{n \rightarrow \infty} F^{\Omega}\left(\mathcal{N}^{\otimes n},\left\lfloor 2^{r n}\right\rfloor\right)=1\right\}$.

Simplification of codes

$U \otimes \bar{U}\left|\phi^{+}\right\rangle=\left|\phi^{+}\right\rangle$implies $\overline{\mathcal{Z}}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}}$ has same fidelity as
$\mathcal{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}} . \mathcal{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}} \in \Omega \Longrightarrow \overline{\mathcal{Z}}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \leftarrow \mathrm{AB}} \in \Omega$.
If μ is Haar probability measure on $\mathrm{U}(K)$:

$$
\begin{aligned}
\bar{Z}_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} & :=\int d \mu(U) U_{\mathrm{B}^{\prime}} \otimes \bar{U}_{\mathrm{A}} Z_{\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{AB}} U_{\mathrm{B}^{\prime}}^{\dagger} \otimes U_{\mathrm{A}}^{T} \\
& =K\left(\phi_{\mathrm{B}^{\prime} \mathrm{A}}^{+} \otimes \Lambda_{\mathrm{A}^{\prime} \mathrm{B}}+\left(\mathbb{1}-\phi^{+}\right)_{\mathrm{B}^{\prime} \mathrm{A}} \otimes \Gamma_{\mathrm{A}^{\prime} \mathrm{B}}\right) .
\end{aligned}
$$

State of $\mathrm{A}^{\prime}: \rho_{\mathrm{A}^{\prime}}=\left(\Lambda_{\mathrm{A}^{\prime}}+\left(K^{2}-1\right) \Gamma_{\mathrm{A}^{\prime}}\right) d_{\mathrm{B}}^{-1}$

Semidefinite programs

NSBA condition for \bar{Z} is: $\Lambda_{\mathrm{A}^{\prime} \mathrm{B}}+\left(K^{2}-1\right) \Gamma_{\mathrm{A}^{\prime} \mathrm{B}}=\rho_{\mathrm{A}^{\prime}} \otimes \mathbb{1}_{\mathrm{B}}$, with which we can eliminate $\Gamma_{\mathrm{A}^{\prime} \mathrm{B}}$ in the expression for \bar{Z}.
The channel fidelity simplifies to

$$
F=\operatorname{Tr} N_{\mathrm{A}^{\prime} \mathrm{B}}^{\mathrm{T}} \Lambda_{\mathrm{A}^{\prime} \mathrm{B}}
$$

while the constraints simplify to

$$
\begin{gathered}
0 \leq \Lambda_{\mathrm{A}^{\prime} \mathrm{B}} \leq \rho_{\mathrm{A}^{\prime}} \otimes \mathbb{1}_{\mathrm{B}} \\
\rho_{\mathrm{A}^{\prime}} \geq 0, \operatorname{Tr} \rho_{\mathrm{A}^{\prime}}=1 \\
\mathbf{N S}: \Lambda_{\mathrm{B}}=\mathbb{1}_{\mathrm{B}} / K^{2} \\
\mathbf{P P T} \mathbf{p}:\left\{\begin{array}{l}
\mathbf{t}_{\mathrm{B}}\left[\Lambda_{\mathrm{A}^{\prime} \mathrm{B}}\right] \geq-\rho_{\mathrm{A}^{\prime}} \otimes \mathbb{1}_{\mathrm{B}} / K, \\
\mathbf{t}_{\mathrm{B}}\left[\Lambda_{\mathrm{A}^{\prime} \mathrm{B}}\right] \leq \rho_{\mathrm{A}^{\prime}} \otimes \mathbb{1}_{\mathrm{B}} / K .
\end{array}\right.
\end{gathered}
$$

Further simplification possible for covariant \mathcal{N}.

Non-signalling codes and the hypothesis-testing bound

For success probability over classical channels:

- Zero-error case: Cubitt, Leung, WM, Winter (1003.3195)
- General case: WM (1109.5417). Performance of NS codes equivalent to powerful hypothesis-testing based upper bound of Polyanskiy, Poor and Verdú.
The WM-Wehner generalisation of the PPV bound gives an SDP upper-bound for performance of entanglement-assisted codes:

$$
\begin{aligned}
F^{\mathbf{E A}}(\mathcal{N}, K) \leq B(\mathcal{N}, K)= & \max \operatorname{Tr} N_{\mathrm{A}^{\prime} \mathrm{B}}^{\mathrm{T}} \Lambda_{\mathrm{A}^{\prime} \mathrm{B}} \\
& 0 \leq \Lambda_{\mathrm{A}^{\prime} \mathrm{B}} \leq \rho_{\mathrm{A}^{\prime}} \otimes \mathbb{1}_{\mathrm{B}} \\
& \rho_{\mathrm{A}^{\prime}} \geq 0, \operatorname{Tr} \rho_{\mathrm{A}^{\prime}}=1 \\
& \Lambda_{\mathrm{B}} \leq \mathbb{1}_{\mathrm{B}} / K^{2}
\end{aligned}
$$

Non-signalling codes and the hypothesis-testing bound

Our SDP for $F^{\mathbf{N S}}(\mathcal{N}, K)$ differs from $B(\mathcal{N}, K)$ only in having an equality in the constraint $\Lambda_{\mathrm{B}} \leq \mathbb{1}_{\mathrm{B}} / K^{2}$ so

$$
F^{\mathbf{E A}}(\mathcal{N}, K) \leq F^{\mathbf{N S}}(\mathcal{N}, K) \leq B(\mathcal{N}, K)
$$

Does $F^{\mathbf{N S}}(\mathcal{N}, K)=B(\mathcal{N}, K)$? True for classical channels.
Since the bound B is asymptotically tight,

$$
Q^{\mathbf{N S}}\left(\mathcal{N}_{\mathrm{B} \leftarrow \mathrm{~A}^{\prime}}\right)=Q^{\mathbf{E A}}\left(\mathcal{N}_{\mathrm{B} \leftarrow \mathrm{~A}^{\prime}}\right)=\frac{1}{2} \max _{\rho_{\mathrm{A}^{\prime}}} I(\mathrm{R}: \mathrm{B})_{\mathcal{N}_{\mathrm{B} \leftarrow \mathrm{~A}^{\prime}} \rho_{\mathrm{RA}^{\prime}}}
$$

where $\rho_{\mathrm{RA}^{\prime}}$ is a purification of $\rho_{\mathrm{A}^{\prime}}$.
(Bennett, Shor, Smolin, Thapliyal - quant-ph/0106052)

PPTp codes and entanglement distillation

If \mathcal{N} can be implemented using one copy of $\nu_{\mathrm{BA}^{\prime}}$ and classical communication then $F^{\mathbf{P P T p}_{(}}(\mathcal{N}, K)=F_{\Gamma}\left(\nu_{\mathrm{BA}^{\prime}}, K\right)$.

Werner-Holevo channels

Qutrit Werner-Holevo channel: $\mathcal{W}^{(3)}: X \mapsto \frac{1}{2}\left(\mathbb{1} \operatorname{Tr} X-X^{\mathrm{T}}\right)$.
$\mathcal{W}^{(3)}$ is symmetric, therefore $Q\left(\mathcal{W}^{(3)}\right)=0$, however...
$Q^{\mathbf{P P T p}}\left(\mathcal{W}^{(3)}\right)=Q_{0}^{\mathbf{P P T p}}\left(\mathcal{W}^{(3)}\right)=\log \frac{5}{3}$ (using results of Rains).

Can this be achieved by FHA?

PPT-p. and NS \nsubseteq FHA

All systems are qubits. \mathcal{M} is computational basis measurement; H is (classically controlled) Hadamard. LOCC \Longrightarrow PPT-preserving. Non-signalling in both directions.

$\mathcal{G}:=\mathcal{F} \otimes \mathcal{C} \circ \mathcal{E}$

$$
\operatorname{Tr} \mathcal{G}(|0\rangle\langle 0|) \mathcal{G}(|1\rangle\langle 1|)=0
$$

$$
\operatorname{Tr} \mathcal{G}(|+\rangle\langle+|) \mathcal{G}(|-\rangle\langle-|)=0
$$

Cubitt and Smith (0912.2737): \mathcal{G} has quantum zero-error capacity. Therefore, so must \mathcal{F}.

$Q^{\mathrm{NS} \cap \operatorname{PPTp}}\left(\mathcal{W}^{(3)}\right)<Q^{\mathrm{PPTp}}\left(\mathcal{W}^{(3)}\right) ?$

$$
Q^{\mathbf{P P T} \mathbf{p}}\left(\mathcal{W}^{(3)}\right)=Q_{0}^{\mathbf{P P T} \mathbf{p}}\left(\mathcal{W}^{(3)}\right)=\log \frac{5}{3}
$$

$\rightarrow R=\log (5 / 3-1 / 30)$

- $R=\log (5 / 3-1 / 40)$

Example: Qubit depolarising channel

$$
F^{\Omega}\left(\mathcal{D}_{\alpha}^{\otimes 5}, 2\right)
$$

Outlook

- Investigate further constraints e.g. k-extendibility.
- What is the asymptotic capacity of PPTp / PPTp-NS codes?
- Is true zero-error superactivation possible?

Outlook

- Investigate further constraints e.g. k-extendibility.
- What is the asymptotic capacity of PPTp / PPTp-NS codes?
- Is true zero-error superactivation possible?

Thanks!

