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Channel coding

Size of code: K = dp = dp'. ‘

Channel fidelity: F' = Tr7zp,¢3 ,, = K" Trog, , Mpa
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Choi operator: Lrq = dQLReQ(bQQa

LreqXq = TrqLrqX{



Motivation

’ Basic question: How large can F' be for given K and J\/?‘

“One-shot” quantum information theory.

» Datta and Hsieh (1105.3321v2): general converse and
achievability bounds for entanglement-assisted codes.
» Asymptotically correct for N®™, but not clear how to compute
efficiently.

» Matthews and Wehner (1210.4722):

» Related channel coding to hypothesis testing to obtain an
asymptotically correct converse for entanglement-assisted
codes.

» SDP + channel symmetry — efficient computation for A/®™

» Generalises (classical) results of Polyanskiy-Poor-Verdd
(classical channels) and Wang and Renner (c-q channels).



Motivation

» This work: Start with a very general class of codes and apply
two ‘nice’ constraints obeyed by unassisted codes to obtain
upper bounds on their channel fidelity.

» Not asymptotically correct...

> ...but efficiently computable.



(0804.0180) Chiribella, D'Ariano, Perinotti

Forward assisted codes

(quant-ph/0104027) Eggeling, Schlingemann, and Werner

Most general form of linear map which takes operations to
operations even when acting on part of a multipartite operation.
The map only depends on ZAprAB = D/ RBFR—QEAQeA,
thus: Mpip = TrA’BZA/B’ABNgA/'

ZaBrAB corresponds to a forward-assisted code (FAC) iff it is
non-signalling from Bob to Alice.



Non-signalling quantum operations

ZaprAB is non-signalling from Bob to Alice if

TI‘B/ ZA’B’(—AB = Zﬁ/lffiTrB.
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B z / B B
B
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In terms of the Choi operator for Za/p/ aAB:

’ Trg' Zapap = (TresZapas/de) ® 1 ‘

Non-signalling from Alice to Bob if

’ TrarZapaB = (TraraZapap/da) @ La ‘




Forward assisted codes

Forward-assisted codes correspond to operators Z satisfying

’ (CP) ZA’B’AB Z 0‘
(TP): Trarp Zama = 1aB
’ (NSBA) TrB’ZA’B’AB = (TrB’BZA’B’AB/dB) & ]].B ‘

Channel fidelity of 7 is

F = K‘lTrgbB/AZA/B'ABNgA/

Without further constraints, can always achieve F' = 1.



Non-signalling codes

’(NSAB) Trar Zamp/AB = (TrA’AZA’B’AB/dA) & ﬂA‘

Unassisted code (UA):
ZapreaB = EnreaADpre B
Local operations (4 shared
randomness).

Entanglement-assisted codes
(EA): ZapreaB =
EA/A’(anDB/FBb/(ﬁab

Local operations and shared
entanglement.




PP T-preserving codes

a Rains (quant-ph/0008047)

Transpose map tq : |i)(j|q — [j)Xi|q-
Any separable pap has positive
partial-transpose (PPT): tapap > 0.
ZapraB is PPT-preserving (PPTp) iff
B B’ tapaaBb = 0. = tap/TaA/BD-

For dyr =dg =1: Zyprap is called
PPT-binding or Horodecki channel.
PaABb OaA’B'b Zero-quantum capacity.

By a PPT-preserving code, we mean any FAC whose bipartite operation
is PPT-preserving. Additional constraint: ’(PPTp): taaZapag > 0.
We denote this class of codes by PPTp

PPTp O UA, PPTp 2 EA.



PP T-preserving codes

> We say a forward-assisted code is FHA if F is Horodecki.
» FHA C PPTp.

» Superactivation (Smith-Yard): Combination of Horodecki
channel and (zero quantum capacity) 50 percent erasure
channel can have positive capacity.

» Expect FHA capacity > UA capacity sometimes.



Relationships between classes

Forward-assisted codes

Closed under composition and convex combination.
For each class 2 we define:

FQ(N, K) = max K_lTrd)B’AZA’B’ABNgA/
for da = dgr = K and Zp/piap € .

Capacity: QN := sup{r : lim,_,o0 FEN®",|27"]) = 1}.




Simplification of codes

>

A

f

U®U|pT) = |¢T) implies ZA'B/tAB has same fidelity as
ZABAB- ZA'B'«AB € 0 = ZapraB € (L.
If i is Haar probability measure on U(K):

ZA'B/AB 1—/dM(U)UB/ ® UrZapapUf, © UL,

=K (¢ n @ Aag + (1 — ¢ )pa @ Tarp).
State of A’ PAT = (AA’ + (K2 — 1)FA/)d]§1



Semidefinite programs

NSBA condition for Z is: Axp + (K? — 1)['ap = par ® 1, with
which we can eliminate I'p/g in the expression for Z.
The channel fidelity simplifies to

F =TrNipAas
while the constraints simplify to

0<Aap <pa®@1p
par = 0,Trpar =1
NS :Ap = 1p/K?
tg[AaB] > —pa ® 1/ K,

PPTp :
{tB[AA/B} < pa @ 1g/K.

Further simplification possible for covariant .



Non-signalling codes and the hypothesis-testing bound

For success probability over classical channels:
» Zero-error case: Cubitt, Leung, WM, Winter (1003.3195)

» General case: WM (1109.5417). Performance of NS codes
equivalent to powerful hypothesis-testing based upper bound
of Polyanskiy, Poor and Verdu.

The WM-Wehner generalisation of the PPV bound gives an SDP
upper-bound for performance of entanglement-assisted codes:

FEAN K) < B(N,K) =maxTrNigAap
0<Axp <pa®1p
par > 0, Trpar =1
Ap<ip/K?>



Non-signalling codes and the hypothesis-testing bound

Our SDP for FNS(\, K) differs from B(N\, K) only in having an
equality in the constraint Ag < 1g/K? so

FRAWN, K) < FNS(W, K) < BN, K).
Does FNS(N, K) = B(N, K)? True for classical channels.

Since the bound B is asymptotically tight,

1
QNS(NB%A’) = QEA(-N’BHA/) D) max I (R : B)NBFA/pRA/

N

where pra’ is a purification of pa:.
(Bennett, Shor, Smolin, Thapliyal - quant-ph/0106052)



PPTp codes and entanglement distillation

A A Fr(pas, K) := pamax Tr¢{ pTam, dar = dg = K
y .
B B Rains quant-ph/0008047
W.l.o.g. Y can be taken to be NS in both directions.
PAB TA'B
zZ ot L FPPTP(N,K) > Fr(vpar, K)

vpar = Npar/dar

Bennett, DiVincenzo, Smolin, Wootters
——————————— quant-ph /9604024

If A can be implemented using one copy of vgas and classical
communication then FFPTP(A| K) = Fr(vpar, K).



Werner-Holevo channels

Qutrit Werner-Holevo channel: W®) : X $(ITrX — X7T).
W) is symmetric, therefore Q(W®)) = 0, however...

QFFTP(W®)) = Q(I;PTP(W(3)) =log 3 (using results of Rains).

10F  —sa
\ F(W)#2 K)
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PPTp
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NS n PPTp
0.2}
2 4 6 8 10

FNSTPPTR(W®)e2) =1 = Q> PPIP (W) > 1/21
Can this be achieved by FHA?



PPT-p. and NS € FHA

All systems are qubits.

M is computational basis
measurement; H is (classically
controlled) Hadamard.

. LOCC = PPT-preserving.
M B Non-signalling in both
directions.

G G =FRCo€&

\ TrG(|0X0)G(|1X1]) =0,
TeG([+)X+DG(|=X~1) =0
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Cubitt and Smith (0912.2737): G has quantum zero-error capacity.
Therefore, so must F.



QNSTPPTP())(3)) < QPPTP())(3))7
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Example: Qubit depolarising channel

FYDS?,2)

— PPTp
— NS
— PPTp and NS




Outlook

> Investigate further constraints e.g. k-extendibility.
» What is the asymptotic capacity of PPTp / PPTp-NS codes?

> Is true zero-error superactivation possible?
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